金 敏植※

Heat-island mitigation effects of a small river flowing through the urban area Minsik Kim

1. 序論

急激な都市化に伴い地表面被覆の変化・人工排熱 の増加といった要因によりヒートアイランド現象 が深刻化している。この対策として河川の活用や風 の道確保が挙げられている。海風を都市の奥深くま で導き、ヒートアイランドを分担する「風の道」とし ての効果が広島や名古屋などで確認され、東京にお いても隅田川を対象とした実測結果 1) が報告されて いる。東京都心部ではここ数年、日本橋川などで大 規模な調査が実施され、目黒川では河道が「風の道」 を形成しているものの、その風は河口から連続的に 遡上した気塊ではなく、河岸の高層建物が上空の冷 気を取り込んでいる効果が重要であることが指摘 されている²⁾。しかし、現状ではまだ河川の規模や 地理的条件などを踏まえ、具体的な計画手法へ展開 するために必要な十分な知見が得られているとは 言い難い。本研究では、都市内を流れる中小河川を 対象に、河川の地理的な条件、護岸の形態および水 深等に注目し、河川の冷熱環境形成機能の把握を試 みた。特に、河川の涼しさは水面の冷却作用による

のか、あるいはオープンスペースとしての風通しの 良さに起因するのかを明らかにすることを目的に、 条件の異なる二つの中小河川を対象に実測を行っ た。

2. 実測概要

本実測は、沿岸部に位置し海風とほぼ平行で水深 の深い墨田区の大横川(錦糸町駅の南西に位置し、 川幅 23mで海岸からの距離は 5.6km である)とやや 内陸に位置し、屈曲した流路をもち、水深の浅い新 宿区の神田川(高田馬場駅北西方向から西新宿に至 る中流部で距離約 4km、川幅は 13.5mである)を対 象に長期測定と集中測定に分け実施された。(図 1 左上)長期測定の期間は、大横川が 2007 年 7 月 20 日から 9 月 4 日、神田川が 2008 年 8 月の 1 日から 27 日で集中測定の期間は、大横川が 2007 年 8 月の 18 日から 21 日、神田川が 2008 年 8 月の 13 日から 15 日である。長期測定では、上空の気象(一般気象) を把握するため、それぞれの河川の周辺建物屋上で 気温、風向・風速、日射量を 1 分間隔で測定した。 また水深約 10cm に水温計(図 1 の◆印、大横川 1 地

点、神田川 8 地点)を設置し、河川上を含め周辺市 街地で自然通風シェルタに装着した温度ロガーよ り2分間隔で測定を行った(図1の丸、大横川 16 地点、神田川は85 地点)。さらに、風向・風速は超 音波風速計により、大横川では左岸に1地点、神田 川では河道に沿った6地点の橋の上と下に設置し10 秒間隔でデータを取り、風の連続性を検討した(図 1のa^{*}、a~f)。集中測定については、水体による 冷却効果を調べるため、大横川の場合、左岸手摺か ら水面上へ足場を組み、岸から約 2mの位置で放射 収支、オープンパスアナライザーと超音波風速温度 計による渦相関法、河道を斜めに横切るパス(距離 160m)でシンチレーション法による顕熱測定を実施した。

神田川の場合は、河川の冷気の動きに着目し、河 道内に足場を組み、水面から約 0.5m の位置と左岸 の手摺に超音波風速温度計を設置した。また、河道 内の 10 地点に通風シェルタに装着した温度ロガー (水面からの高さ 0.5m、1m、2m)を設置し、5 秒間隔 で測定を行った。

3. 気温低下量の比較

それぞれの河川において、実測期間のうち、一般 気象の日最高気温が 30℃以上で降水がなかった晴 天日・計3日について解析した。図2はその3日間 の風配図で、新木場はSSW風が60%で、東京はS風 が30%である。周辺市街地の(図1黒丸)平均値を 市街地平均気温と定義し、水温・河川の気温(図1 のa'、d)・上空気温・新木場・東京(アメダス) との温度差、および風速の日変化を考察した(図3)。

大横川の場合は、日中水温は 4℃低温であるが、 早朝と夜間には気温を上回る。河川中は終日周辺市 街地とより低温で、日中は2℃弱の気温差である。

図2 風配図(左;大横川 右;神田川)

また、河川上は上空の気温に比べ、日中は低温であ るものの早朝と夜間には市街地気温と同じ気温分 布をしている。海岸に近い新木場との気温差は午後 から夜半に大きくなり、日の出頃にはほとんど温度 差がなくなる。この変化は風速の変化とよく対応し ている。水路上の気温低下量は、午前中は海岸との 気温差にほぼ等しいが、午後から夜間にかけては小 さくなり、夜間の水路上は海岸部の様な涼しさは得 られなくなる。一方、神田川の場合には終日水温が 低く、日中は6℃を越える温度差である。神田川の 上空風速は東京の風速に比べ、やや小さい風速であ る。しかし、河川上と河川下の風速は上空の風速に 比べ弱い風速で、市街地との気温差をみると、河川 下は終日低温で日中約1.5℃の気温差である。また、 河川上は日中、上空の気温より高く、河川下のよう な涼しさはみられない。図4は、河川上の気温低下 量と水温との関係を検討した結果で、大横川の場合、 河川上の気温低下は概ね水温との温度差に比例し ているが、神田川の場合にはそういう関係はみられ ない。両方とも風速による違いは明確ではない。

2.0

図3 市街地気温に対する温度差と風速の日変化(晴天日平均)

814 河川上の気温低下重と水温との関係 (上;大横川 下;神田川)

4. 熱収支(大横川)

バルク法による潜熱・顕熱フラックスを算出し、各種 方法による測定値と比較検討した。バルク係数は、 近藤の有限水面での算定式³⁾において、吹走距離 50m、平均風速 2m/s、風速測定高度を 3.7m として 風速の対数分布を仮定した場合の 0.002 を使用し た。図 7 は、渦相関法とバルク法による潜熱フラック スを比較したもので、両者はかなり良い一致を示し ている。渦相関法から算出した水蒸気の輸送速度 (右軸はレイス数 Le=1 を仮定した場合の熱伝達率)も、 風速と良い対応関係を示しており(図 8)、輸送速度 を風速で無次元化したバルク係数 CE も上記で算定 した 0.002 と一致している(図 9)。

図8 輸送速度と風速の関係 図9 バルク係数と風速の関係

一方、顕熱フラックスについては、渦相関法・シンチレーショ ン法による実測値は、バルク法の値と大きく異なっ ている(図 10)。潜熱フラックスとこのような差異が生じ た理由は、熱と水蒸気のソースの違い、それに伴う 境界層の違いが影響していると思われ、熱に関し ては測定位置が水面フラックスを評価するには適切で なかったと考えられる。図 11 は、バルク法による 潜熱・顕熱フラックスを採用し、残差として水体への蓄 熱量を評価した熱収支の結果である。隅田川 1)の 場合と同様、乱流フラックスは小さく、日射の大半が水 体への貯熱に配分されている。水体が水路上の空 気を冷却する「負の顕熱フラックス」は無視できるほど 小さい。

5. 河川緑化による水温の変化(神田川)

図 12 は晴天時、流路に沿った水温分布を示して いる。また、測定区間内で緑化がされていた部分 を点線で表示している。河川周辺が緑化されてい ない区間では水温が高くなるが、緑化されている 部分では低くなる傾向があった。時間別に見ると 朝方は水温の変化はない。日中の時間帯では最高 1℃ぐらい上がって、緑の区間になると下がってい る。しかし、午後になると緑の区間では水温が上

図13日射による水温変化

がっていた。緑化区間と緑化されていない区間での 水温変化が著しい。そこで、日射量と水温上昇量を それぞれの区間でみることにした。図13は実測区 間を緑化区間を含め3区間に分けたものである。各 区間の距離は約1200mで、実測ときの流速は0.67 m/s で流れていた。同じ水体を解析するため、そ れぞれ前の地点より 30 分後のデータを使い解析し た。③-①、⑧-⑥は緑化されてない区間(図1の神 田川)の水温差を表したもので、⑥-③は緑化区間 の水温差を表したものである。緑化されてない区間 では日射が上昇するにつれて水温が上がっていた。 しかし、緑化区間では日射が上昇しても他区間に比 べ、水温が下がっている傾向があった。水深の浅い 神田川の水温は、日射が水温変化に影響していると 考えられる。河川周辺を緑化し、日射を遮蔽するこ とで水温を低く保つことが出来る。

6. 河道内冷気の動き(神田川)

図 14 は水面から街路までの気温鉛直分布を表し たもので、(図 1 の神田川、丸で囲った部分)朝方と 夜では上下分布がなく気温が一様であるが、日中に なるにつれて河道内と橋上での温度差がつき、河道 内が低温になる。しかし、その範囲も水面から 2m 程度の小さな範囲でしかないため、気温を下げる効 果は期待できない。図15は10分平均値したもので、

河川上と河道内では終日1℃の気温差がある。また、 風速は、上空の風速が時間変化をすることに対し、 河川上と河道内では 1m/s 以下の弱い風が吹いてい る。この 10 分平均値の比較だと、河川上と河道内 の気温差があり、河道内は河川上と違う空気が流れ ていると明確に把握できるが、河道内の冷気の動き については把握できなかったため、より短い時間ス ケールで解析を行った。図16は、1秒平均値したも ので、夜間には河川上の気温はあまり変化がないこ とに対し、河道内では瞬間的に 1℃も気温が下がる 変化がみられる。さらに、丸で囲った部分をみると、 その瞬間的な冷気の動きは弱風で北風から南風に なるときにみられる。日中、河川上では市街地から の暖気が流入し 1℃以上上がる傾向がみられた。以 上のように、1秒の短いスケールでみると、河道内 の冷気は、河川上の気温変化とはあまり対応してな い。このことから、河道内と河川上は成分の違う風 が流れていると考えられる。

7. 結論

水深の深い大横川は、水体の大きな蓄熱のため、 夜は水温が気温より高い。しかしながら、河川上の 気温は、昼間最大 1.5℃の温度差があった。水面の 熱収支については、水体が河川上の空気を冷却する 負の顕熱フラッスは小さく、水面の冷却効果は大き くなかった。水深の浅い神田川では、水温は終日気 温より低い。河道に沿って風は吹いているが、河道 内の風速は弱く、冷気も水面付近に存在するだけで あったため風の道とは言い切れない。神田川の様な 水深の浅い河川の水温は日中、日射の影響をうける ため、緑化された区間を通過すると低くなる傾向が 確認された。河道が深く掘りこまれた神田川では、 夜間は水面近くに冷気が滞留するが、日中は市街地 からの暖気が河道内に活発に流入する。冷気は河道 の屈曲部などの特定な場所で流出するのではなく、 河道の至る所でランダムに市街地に拡散している と思われる。

<謝辞>

本研究は、環境省の委託による「都市内水路等によるヒートア イランド抑制効果検討」(文献 4) の一環として行ったものであ る。実測に際しては、防衛大学・菅原広史氏に多大な協力をいた だいた。ここに記して、感謝の意を表します。

- く文献ン
- 1) 成田健一ほか:日本建築学会計画系論文集 545 71-78 2001
- 2)成田健一・鍵屋浩司:日本建築学会大会梗概集 D-1 507-508 2006
- 3) 近藤純正:「水環境の気象学」朝倉書店 1994
- 4) 平成 19 年度都市内水路等によるヒートアイランド抑制効果 検討業務報告書 平成 19 年 3 月 社団法人 環境情報科学セン ター

審査員	(主査)	教授	成田	健一
審査員	(副査)	教授	川村	清志
審査員	(副査)	教授	伊藤	庸一