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Abstract: Deriving the class structure of object-oriented software has been studied intensively.  We have proposed a 
methodology to divide the conceptual model used in the object-oriented analysis into basic elements, such as 
classes, attributes, methods, relations, and to define constraint characteristics and constructing operations on 
each element.  In the methodology, we have applied the field theory in the quantum physics to software and 
proposed the software field concepts (Ohki and Kambayashi, 2002a).  Our thesis is that software is a kind of 
fields in which software elements, such as methods and attributes, interact each other to produce certain 
behavioral patterns.  The methodology explains well the characteristics of class libraries (Ohki and 
Kambayashi, 2002b).  Once the software elements are extracted from the software field, the methodology 
allows constructing design patterns from the characteristics of the elements (Ohki and Kambayashi, 2002a).  
Although we defined the extract operations to elicit the software elements, we failed to show that those 
operations have reasons and are correct (Ohki and Kambayashi, 2002a).  In order to overcome this problem, 
in this paper, we introduce the distribution functions to represent the software elements, and to formulate the 
interactions of the functions.  Using the distribution functions and the interactions between them, we have 
succeeded to suggest how to extract the software elements from the software field, and how to derive the 
design patterns by using the characteristics of the extract elements.  This paper first describes the basic 
concepts of the software field, and then introduces the distribution functions to represent the software 
elements.  In the latter part of this paper describes that it is applicable to derive typical design patterns. 

1   INTRODUCTION 
 

One of the most important and hard tasks in the 
object-oriented software development is extracting 
objects from the certain application domain.  Such 
an activity usually requires deep insights and 
experience.  In order to generalize this task, the 
“responsibility-driven approach” and the use-case 
analysis are employed to assist less experienced 
analysts (Wirfs-Brock and Wilkerson, 1989) 
(Jacobson, Booch, and Rumbaugh, 1999).  Sharble 
and Cohen advocate that the bottom-up analysis 
approach, i.e. deriving elements first, fits to the 
information systems better than top-down analysis 
approach, i.e. deriving class structure first (Sharble 

and Cohen, 1993).  The bottom-up approach implies 
that the class is a mere container that includes the 
attributes so that the designer can extract attributes 
and categorize them to construct classes.  Therefore, 
it is important for analysts to extract the basic 
elements and analyze the timing of initializing those 
elements. 

We have pursued this line of bottom-up 
approach and proposed the software field where 
software elements, such as attributes and methods, 
interact each other to produce certain behavioral 
patterns.  The methodology using the software field 
explains the derivation of typical design patterns 
from the software field (Ohki and Kambayashi, 2002a).  
Also the methodology explains well the 



 

 

characteristics of class libraries (Ohki and Kambayashi, 
2002b).  Once the software elements are extracted 
from the software field, the methodology allows 
constructing design patterns from the characteristics 
of the elements (Ohki and Kambayashi, 2002a).  
Although we defined the extract operations to elicit 
the software elements, we failed to show that those 
operations have reasons and are correct (Ohki and 
Kambayashi, 2002a).  In order to overcome this 
problem, in this paper, we introduce the distribution 
functions to represent the software elements, and to 
formulate the interactions of the functions.  Using 
the distribution functions and the interactions 
between them, we have succeeded to suggest how to 
extract the software elements from the software field, 
and how to derive the design patterns by using the 
characteristics of the extract elements.   

This paper first describes the basic concepts of 
the software field, and then introduces the 
distribution functions to represent the software 
elements.  In the latter part of this paper describes 
that it is applicable to derive typical design patterns.  
Section two discusses the motivation introducing the 
field concept to software, Section three defines the 
software field, the distribution functions to represent 
the software elements, and Section four 
demonstrates the applicability of the software field 
to deriving the typical design patterns.  By using the 
distribution functions that represent the software 
elements, the derivation of the adapter pattern and 
the bridge pattern are refined.  Detailed description 
about a set of design patterns will be explained in a 
separate paper. 

 
2   THE SOFTWARE FIELD 
 

One of the major characteristics of software is 
its abstract nature.  We cannot see “software.”  It is 
abstract and invisible.  This fact makes it is difficult 
to pursue the quantitative measurements on software.  
On the other hand, the quantum physics deals with 
invisible matters as well.  “Field” in quantum 
physics is an abstract concept introduced to explain 
the behaviors of the elements as an integral system.  
A field dominates the behavior of each element in it, 
and each element affects to the field as well.  The 
field represents the state of the entire elements, and 
it changes the state as time proceeds.  Even though 
the field theory of physics has no relation to 
software, the concepts behind the theory are 
analogous to the characteristics of software as 
follows: 

 

(1) Elements that constitute the field themselves are 
probabilistic.  In the case of software, even the 
same specification may lead to different 
products.  They have different module 
structures and different data structures depend 
on characteristics of developers and developing 
periods. 

(2) The state of the field is probabilistically 
described as the observation is made. In the case 
of software, attributes and the methods may not 
be found, even though they potentially exist. 

(3) Interactions of multiple forces form an 
eigenstate.  In the case of software, certain 
requests for functionality and certain constraints 
lead to a stable state.  We consider such a state 
as a design pattern. 

(4) The state of a field diffuses as time elapses.  
Analysis of software may reveal many 
implementation possibilities. Software review is 
a process of selection of such possibilities, 
therefore it can be considered as an effort to 
converge such diffusion. 

 
Thus we have introduced the concept of the 

“software field” as illustrated in Figure 1.  The state 
function of the software field describes the behavior 
of the software in the aggregate.  Each element that 
constitutes the software field has constraint 
characteristics so that the elements collectively show 
some patterns.  The constraint field represents the 
specification.  Therefore if we can formulate the 
derivation techniques of the constraint field from 
software specification and its application to the 
software field, we can formulate the extraction of 
new design patterns and class structures, we can 
ultimately automate the tasks of the object-oriented 
analysis and design.  We will discuss the software 
and constraint field more detail in the next section. 
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Figure 1: A concept of the software field and the constraint field. 
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3 BASIC CONCEPTS OF THE 
SOFTWARE FIELD 
 

In order to describe the software field as a state 
function, the following concepts and operations are 
needed be defined: 

(1) The concept of the constraint field 
(2) The coordination to describe the field 
(3) The extraction operation for the elements 
(4) The constraint characteristics for the 

elements 
(5) The construction operations based on the 

constraint characteristics. 
 
3.1  The concept of the constraint field 
 

In software construction, various constraints 
affect the products as well as the development 
processes.  The constraints affect the behaviors of 
the elements extracted during the system analysis 
phase, and then affect the class structure that 
contains those elements.  The assumption of the 
constraint field explains this situation well.  The 
constraint field implicitly dominates the behaviors of 
the elements as shown in Figure 1.  The constraint 
field is an abstract entity that models the constraints 
by which the system analysts and software architects 
navigate their tasks. 

We consider the specification as a potential field 
depicted in Figure 2, and call this potential field the 
constraint field.  The elements of the software move 
around in this field and semantically close elements 
are autonomously grouped into clusters, such as 
classes.   

 
 
 
 
 
 
 
 
 
 

3.2  The coordinate system describing 
the software field 
 

The software field has three axes to describe the 
state of software.  We describe two of them, namely 
identifier I, and event time T.  The third one, actual 
time is too obvious to describe. 

 

(1) Identifier I 
The first axis of the coordinate system is a 

discrete value I that corresponding to an 
identifier (a name of software element).  Naming 
attributes is the most basic task in the system 
analysis.  As the analysis and design of software 
proceeds, the number of identifiers grows.  The 
role of the identifier axis is just the place in 
which identifiers are set, and the domain name 
for multiple identifiers is expressed by the 
distribution function. 

In the context of field concepts, synonyms 
of an identifier express the distribution function 
that describes “simultaneously existing” on the 
axis, as shown in Figure 3.  In the distribution 
function, the most frequently appears identifier 
is extracted as the representative domain name. 

 
 
 
 
 
 
 
 
 
 
 
 

(2) Event time T 
The second axis of the coordinate system is 

the event time T. T is a discrete time that 
expresses when the software field changes its 
state, and is not related to the actual time.  It 
represents when events occur.  In the analysis 
document, it represents when the trigger arrives 
to invoke certain functions of the software.  Such 
functions include the constructors to initialize 
values and destructors to erase values.  Figure 3 
depicts the creations and destructions of 
elements according to the event time T. 

 
The software field F that is described as a 

distribution function with these three axes described 
consists of the software elements.  Therefore the 
software field F can be expressed as the sum of the 
distribution function of each element shown as 
Formula (1). 

 
F(I, T; t0) = Sigma Fk(I, T, t0)  where k denotes 
single distribution function for an element.  (1) 

 
3.3 Distribution functions 
representing   the  software elements 

Figure 2: Specification as the constraint field. 
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Figure 3:   Software elements as the distribution function.
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Figure 5:   The definition of coupling force by  
the overlapping ratio of the elements. 
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It is obvious to assume the software field consists 
of the software elements.  Therefore the software 
field is naturally described as a sum of all the 
distribution functions for elements as shown in 
Formula (1). 

We define the extracting operation for the 
software element from such software field means as 
“extracting stable distribution function.”  The stable 
distribution function means that the state of 
distribution does not change as the event time 
proceeds.  Then, a software element is recognized 
and its existence has meaning.  Since the value of 
the distribution function is binary, i.e. existing and 
not existing, it is represented as a step function with 
the starting event time T1 and the ending event time 
T2, as shown in Figure 4 and formulated as Formula 
(2). 

 
 
 
 
 
 
 
 
 
 
 
 
F1(T1,T2)=G(T-T1 ) - G(T-T2 )                 （2） 
 
 

3.4 Coupling force between the 
software elements 

 
The coupling force between two elements can 

be defined by using the distribution function for the 
elements as shown in Figure 5 and formulated as 
Formula (3).  The coupling force is also a software 
element that affects other elements, such as 
attributes and methods, to form classes.  Formula (3) 
shows the overlapping ratio of two distribution 
functions, and means the more overlapping the 
tighter they are coupled.   

 
 
 

Pab ::= hab( i, k; m, n) = Fa(Ti, Tk)*Fb(Tm , Tn)/{(Tk-
Ti )+(Tn-Tm)} 

= {G(T-Ti )G(T-Tm)-G(T-Ti )G(T-Tn) – (G(T-
Tk)G(T-Tm) - G(T-Tk )G(T-Tn))} / {(Tk-Ti ) + (Tn-
Tm )} 

 where a <> b        (3) 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
3.5 CLASS CONSTRUCTING 
OPERATION 

 
By using the formula (3), we can construct 

classes from the extracted elements.  A class can be 
seen as a combined entity of the software elements 
as formulized in Formula (4).  The operation E 
means the Cartesian products of arbitrary elements 
a and b on the identifier axis I.  Since the result of 
the operation is expressed as the elements of 
symmetric matrix, Formula (4) can be considered as 
an operation extracting the maximum value of each 
law. 

 
Class C ::= Max E hab( i, k; m, n)  =  [Fa, Fb, …]                   

(4) 
 
A class is constructed by grouping the 

distribution function, i.e. the software elements, that 
are tightly coupled by the coupling force. 
 

 
3.6 CHARACTERISTICS OF THE 
ELEMENTS 

 
In order to drive design patterns, we need to 

extract not only classes but also their structures.  
The structure of a group of classes that constitute a 
design pattern is determined by the characteristics 
of the software elements.  The constraint field 
should define the characteristics of each element, 
because the specification is the source of all the 
information of the software elements, and the 
constraint field is formed by the specification.  
Although the structure of the constraint field is not 
clear enough to determine the characteristics of the 
software elements, the following characteristics are 

Step function G(T-T1 )   

T1  
T  

T1 T2 
F1 

Figure 4: The distribution function of the element F1. 



 

 

Figure 6(ｂ):  The structure of adapter pattern 

known to determine the structure of software, the 
design patterns. 

 
(1) Situation level S 
When an element is extracted, it is assigned a 

situation level.  It indicates the level of inheritance 
for the extracted element.  If the situation level of an 
element A is less than the situation level of another 
element B, the element A is supposed to be in a class 
closer to the root of inheritance tree than the class 
that contains the element B.  Elements that have the 
same event time are placed at the same situation 
level. 

 
(2) Multiplicity M 
The multiplicity indicates whether different 

elements have the same identifier or not.  If the 
multiplicity of an identifier is greater than one, it 
indicates that the identifier stands for more than one 
element.  When the extracted element is an attribute, 
it has a unique identifier and the multiplicity is one.  
When the extracted element is a method, the element 
may share the identifier with other elements.  Those 
elements are placed at the same identifier space but 
at different situation levels.   

 
(3) Degree of multiple implementations V 
When an element has multiple implementations, 

it is prohibited to place it with other entity with 
single implementation.  The relation between the set 
of elements with single implementation and such an 
element with multiple implementations corresponds 
to the “identifier dependent relation.” 

 
4 APPLICATIONS TO THE 
DERIVATION OF DESIGN 
PATTERNS 

 
The concepts of the software field and 

constraint field lead groups of the extracted software 
elements become the design patterns (Gamma, Helm, 
Johnson and Vissides, 1995).  Although we have 
demonstrated that typical design patterns are 
derivable from the software field, we failed to 
explain how to derive the characteristics of the 
software elements.  The distribution functions we 
have introduced in this paper rationalize the 
characteristics of the elements and the derivation of 
the design patterns.  In this line of study may lead 
the new design patterns from the software field and 
the constraint field.  In this section, we demonstrate 
how two typical design patterns, i.e. the adapter 

pattern and the bridge pattern, are derived from the 
software field. 
(1) Adapter: interface to objects 

The adapter design pattern emerges when we 
have a class with a stable method, e.g. the Target 
class in Figure 6(b), and would like to add new 
features without changing the interface.  We can 
start to distill this pattern through extracting 
Request() method and SpecificRequest() method 
from the software field, and placing them at the 
appropriate position on the base level of the class 
Target and the class Adapter.  They are extracted at 
the different event times. 

The adapter pattern is formed when the extracted 
elements Request() and SpecificRequest() have the 
following characteristics; both of them have the 
same coordinate values on the identifier axis and 
they share the same implementation event time.  
Since they have the same existence event period 
(both the starting event time and the ending event 
time are the same), we cannot place the two classes 
that have Request() and SpecificRequest() at the 
same place.  Therefore we have to place them on 
the different situation level.  This makes them have 
the inheritance relation with the base classes, and 
the situation becomes shown in Figure 6(a).  This 
structure is the adapter design pattern shown in 
Figure 6(b). 
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Figure 6(a):  The layout of the software elements 
corresponds to the Adapter pattern. 
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Figure 7(c):  The structure of bridge pattern with the constraints 

(2) Bridge: implementation of objects 
The bbridge design pattern emerges when we 

try to separate the interface and the implementation 
of a class and to make it easy to extend.  The bridge 
pattern emerges when there is an abstract method 
Operation() and several its implementation methods 
OperationImp() are known to be implemented at 
different event times.  Even though different 
implementations are extracted at the different event 
times, they all share the same abstract method 
Opearation() with the one event time, the initial 
layout of the elements are shown in Figure 7(a). 
 

 
 
 
 
 
 
 
 
 
 

Due to the constraint of multiplicity, we cannot 
place those implementations on the same situation 
level.  We have to place them on different situation 
levels and to connect them with the “existence 
dependent relation.”  Since all the implementations 
share the same identifier, classes that have them are 
placed at the same place on the identifier axis and 
have the inheritance relation with the base class 
shown in Figure 7(b).  The structure shown in this 
figure has the multiplicity two.  This structure is the 
bridge design pattern shown in Figure 7(c).  Note 
that two methods, OperationImp1() and 
OperationImp2()  can be placed at the same situation 
level, because they have different existence event 
periods. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

5   CONCLUSIONS 
 

The mechanism of extracting the software 
elements from the software field is explained.  
Expressing the software elements as distribution 
functions rationalizes the extracting operations for 
the software elements and classes.  The deriving 
mechanism of the design patterns is also roughly 
explained by the distribution functions and the 
characteristics of the software elements.  The 
derivation process illustrated here is still a rough 
sketch and it will be scrutinized in the next paper.  
We believe that the constraint field determines the 
distributions of the software elements and their 
characteristics.  The mechanism is still unknown.  
The final goal we are pursuing is the construction 
mechanism of the constraint field from the 
specification.  Then OOP software development will 
be semi-autonomous process defined by the 
specification. 
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Figure 7(a): The initial structure for the Bridge pattern. 
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Figure 7(b): The structure of Bridge pattern with the constraints. 
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