

EXTRACTING THE SOFTWARE ELEMENTS AND DESIGN
PATTERNS FROM THE SOFTWARE FIELD

Yasushi Kambayashi Mikio Ohki

Department of Computer and Information Engineering

Nippon Institute of Technology

4-1 Gakuedai Miyashiro-cho, Minamisaitama-gun, Saitama 345-8501 Japan
E-mail: yasushi@nit.ac.jp, ohki@nit.ac.jp

Keywords: Modeling criteria , Quantum field theory, Object oriented software

Abstract: Deriving the class structure of object-oriented software has been studied intensively. We have proposed a
methodology to divide the conceptual model used in the object-oriented analysis into basic elements, such as
classes, attributes, methods, relations, and to define constraint characteristics and constructing operations on
each element. In the methodology, we have applied the field theory in the quantum physics to software and
proposed the software field concepts (Ohki and Kambayashi, 2002a). Our thesis is that software is a kind of
fields in which software elements, such as methods and attributes, interact each other to produce certain
behavioral patterns. The methodology explains well the characteristics of class libraries (Ohki and
Kambayashi, 2002b). Once the software elements are extracted from the software field, the methodology
allows constructing design patterns from the characteristics of the elements (Ohki and Kambayashi, 2002a).
Although we defined the extract operations to elicit the software elements, we failed to show that those
operations have reasons and are correct (Ohki and Kambayashi, 2002a). In order to overcome this problem,
in this paper, we introduce the distribution functions to represent the software elements, and to formulate the
interactions of the functions. Using the distribution functions and the interactions between them, we have
succeeded to suggest how to extract the software elements from the software field, and how to derive the
design patterns by using the characteristics of the extract elements. This paper first describes the basic
concepts of the software field, and then introduces the distribution functions to represent the software
elements. In the latter part of this paper describes that it is applicable to derive typical design patterns.

1 INTRODUCTION

One of the most important and hard tasks in the
object-oriented software development is extracting
objects from the certain application domain. Such
an activity usually requires deep insights and
experience. In order to generalize this task, the
“responsibility-driven approach” and the use-case
analysis are employed to assist less experienced
analysts (Wirfs-Brock and Wilkerson, 1989)
(Jacobson, Booch, and Rumbaugh, 1999). Sharble
and Cohen advocate that the bottom-up analysis
approach, i.e. deriving elements first, fits to the
information systems better than top-down analysis
approach, i.e. deriving class structure first (Sharble

and Cohen, 1993). The bottom-up approach implies
that the class is a mere container that includes the
attributes so that the designer can extract attributes
and categorize them to construct classes. Therefore,
it is important for analysts to extract the basic
elements and analyze the timing of initializing those
elements.

We have pursued this line of bottom-up
approach and proposed the software field where
software elements, such as attributes and methods,
interact each other to produce certain behavioral
patterns. The methodology using the software field
explains the derivation of typical design patterns
from the software field (Ohki and Kambayashi, 2002a).
Also the methodology explains well the

characteristics of class libraries (Ohki and Kambayashi,
2002b). Once the software elements are extracted
from the software field, the methodology allows
constructing design patterns from the characteristics
of the elements (Ohki and Kambayashi, 2002a).
Although we defined the extract operations to elicit
the software elements, we failed to show that those
operations have reasons and are correct (Ohki and
Kambayashi, 2002a). In order to overcome this
problem, in this paper, we introduce the distribution
functions to represent the software elements, and to
formulate the interactions of the functions. Using
the distribution functions and the interactions
between them, we have succeeded to suggest how to
extract the software elements from the software field,
and how to derive the design patterns by using the
characteristics of the extract elements.

This paper first describes the basic concepts of
the software field, and then introduces the
distribution functions to represent the software
elements. In the latter part of this paper describes
that it is applicable to derive typical design patterns.
Section two discusses the motivation introducing the
field concept to software, Section three defines the
software field, the distribution functions to represent
the software elements, and Section four
demonstrates the applicability of the software field
to deriving the typical design patterns. By using the
distribution functions that represent the software
elements, the derivation of the adapter pattern and
the bridge pattern are refined. Detailed description
about a set of design patterns will be explained in a
separate paper.

2 THE SOFTWARE FIELD

One of the major characteristics of software is
its abstract nature. We cannot see “software.” It is
abstract and invisible. This fact makes it is difficult
to pursue the quantitative measurements on software.
On the other hand, the quantum physics deals with
invisible matters as well. “Field” in quantum
physics is an abstract concept introduced to explain
the behaviors of the elements as an integral system.
A field dominates the behavior of each element in it,
and each element affects to the field as well. The
field represents the state of the entire elements, and
it changes the state as time proceeds. Even though
the field theory of physics has no relation to
software, the concepts behind the theory are
analogous to the characteristics of software as
follows:

(1) Elements that constitute the field themselves are
probabilistic. In the case of software, even the
same specification may lead to different
products. They have different module
structures and different data structures depend
on characteristics of developers and developing
periods.

(2) The state of the field is probabilistically
described as the observation is made. In the case
of software, attributes and the methods may not
be found, even though they potentially exist.

(3) Interactions of multiple forces form an
eigenstate. In the case of software, certain
requests for functionality and certain constraints
lead to a stable state. We consider such a state
as a design pattern.

(4) The state of a field diffuses as time elapses.
Analysis of software may reveal many
implementation possibilities. Software review is
a process of selection of such possibilities,
therefore it can be considered as an effort to
converge such diffusion.

Thus we have introduced the concept of the

“software field” as illustrated in Figure 1. The state
function of the software field describes the behavior
of the software in the aggregate. Each element that
constitutes the software field has constraint
characteristics so that the elements collectively show
some patterns. The constraint field represents the
specification. Therefore if we can formulate the
derivation techniques of the constraint field from
software specification and its application to the
software field, we can formulate the extraction of
new design patterns and class structures, we can
ultimately automate the tasks of the object-oriented
analysis and design. We will discuss the software
and constraint field more detail in the next section.

Constraint Field
V (I, T; t)

t (t = t0)

Software Field
F(I, T ; tk)

I

Figure 1: A concept of the software field and the constraint field.

T

3 BASIC CONCEPTS OF THE
SOFTWARE FIELD

In order to describe the software field as a state
function, the following concepts and operations are
needed be defined:

(1) The concept of the constraint field
(2) The coordination to describe the field
(3) The extraction operation for the elements
(4) The constraint characteristics for the

elements
(5) The construction operations based on the

constraint characteristics.

3.1 The concept of the constraint field

In software construction, various constraints
affect the products as well as the development
processes. The constraints affect the behaviors of
the elements extracted during the system analysis
phase, and then affect the class structure that
contains those elements. The assumption of the
constraint field explains this situation well. The
constraint field implicitly dominates the behaviors of
the elements as shown in Figure 1. The constraint
field is an abstract entity that models the constraints
by which the system analysts and software architects
navigate their tasks.

We consider the specification as a potential field
depicted in Figure 2, and call this potential field the
constraint field. The elements of the software move
around in this field and semantically close elements
are autonomously grouped into clusters, such as
classes.

3.2 The coordinate system describing
the software field

The software field has three axes to describe the
state of software. We describe two of them, namely
identifier I, and event time T. The third one, actual
time is too obvious to describe.

(1) Identifier I
The first axis of the coordinate system is a

discrete value I that corresponding to an
identifier (a name of software element). Naming
attributes is the most basic task in the system
analysis. As the analysis and design of software
proceeds, the number of identifiers grows. The
role of the identifier axis is just the place in
which identifiers are set, and the domain name
for multiple identifiers is expressed by the
distribution function.

In the context of field concepts, synonyms
of an identifier express the distribution function
that describes “simultaneously existing” on the
axis, as shown in Figure 3. In the distribution
function, the most frequently appears identifier
is extracted as the representative domain name.

(2) Event time T
The second axis of the coordinate system is

the event time T. T is a discrete time that
expresses when the software field changes its
state, and is not related to the actual time. It
represents when events occur. In the analysis
document, it represents when the trigger arrives
to invoke certain functions of the software. Such
functions include the constructors to initialize
values and destructors to erase values. Figure 3
depicts the creations and destructions of
elements according to the event time T.

The software field F that is described as a

distribution function with these three axes described
consists of the software elements. Therefore the
software field F can be expressed as the sum of the
distribution function of each element shown as
Formula (1).

F(I, T; t0) = Sigma Fk(I, T, t0) where k denotes
single distribution function for an element. (1)

3.3 Distribution functions
representing the software elements

Figure 2: Specification as the constraint field.

Constraint field V (I, T; t)

Software element

Generated cluster
(e.g. a class)

I

T

Figure 3: Software elements as the distribution function.

t (t = t0)

TSoftware elements as distribution functions
F(I, T; tk)

I

Ti Tk

Fa
Tm Tn

Fb

① Pa b= 0

Ti Tk Tm Tn

③ Pa b = Fc (Tm , Tn) /{ (Tk - Ti) + (Tn - Tm) }

② Pa b =Fc (Tm , Tk) /{ (Tk - Ti) + (Tn - Tm) }

Ti Tk Tm Tn

Figure 5: The definition of coupling force by
the overlapping ratio of the elements.

Fa Fb
T

Fc

Fa Fc = Fb

It is obvious to assume the software field consists
of the software elements. Therefore the software
field is naturally described as a sum of all the
distribution functions for elements as shown in
Formula (1).

We define the extracting operation for the
software element from such software field means as
“extracting stable distribution function.” The stable
distribution function means that the state of
distribution does not change as the event time
proceeds. Then, a software element is recognized
and its existence has meaning. Since the value of
the distribution function is binary, i.e. existing and
not existing, it is represented as a step function with
the starting event time T1 and the ending event time
T2, as shown in Figure 4 and formulated as Formula
(2).

F1(T1,T2)=G(T-T1) - G(T-T2) （2）

3.4 Coupling force between the
software elements

The coupling force between two elements can

be defined by using the distribution function for the
elements as shown in Figure 5 and formulated as
Formula (3). The coupling force is also a software
element that affects other elements, such as
attributes and methods, to form classes. Formula (3)
shows the overlapping ratio of two distribution
functions, and means the more overlapping the
tighter they are coupled.

Pab ::= hab(i, k; m, n) = Fa(Ti, Tk)*Fb(Tm , Tn)/{(Tk-
Ti)+(Tn-Tm)}

= {G(T-Ti)G(T-Tm)-G(T-Ti)G(T-Tn) – (G(T-
Tk)G(T-Tm) - G(T-Tk)G(T-Tn))} / {(Tk-Ti) + (Tn-
Tm)}

 where a <> b (3)

3.5 CLASS CONSTRUCTING
OPERATION

By using the formula (3), we can construct

classes from the extracted elements. A class can be
seen as a combined entity of the software elements
as formulized in Formula (4). The operation E
means the Cartesian products of arbitrary elements
a and b on the identifier axis I. Since the result of
the operation is expressed as the elements of
symmetric matrix, Formula (4) can be considered as
an operation extracting the maximum value of each
law.

Class C ::= Max E hab(i, k; m, n) = [Fa, Fb, …]

(4)

A class is constructed by grouping the

distribution function, i.e. the software elements, that
are tightly coupled by the coupling force.

3.6 CHARACTERISTICS OF THE
ELEMENTS

In order to drive design patterns, we need to

extract not only classes but also their structures.
The structure of a group of classes that constitute a
design pattern is determined by the characteristics
of the software elements. The constraint field
should define the characteristics of each element,
because the specification is the source of all the
information of the software elements, and the
constraint field is formed by the specification.
Although the structure of the constraint field is not
clear enough to determine the characteristics of the
software elements, the following characteristics are

Step function G(T-T1)

T1
T

T1 T2
F1

Figure 4: The distribution function of the element F1.

Figure 6(ｂ): The structure of adapter pattern

known to determine the structure of software, the
design patterns.

(1) Situation level S
When an element is extracted, it is assigned a

situation level. It indicates the level of inheritance
for the extracted element. If the situation level of an
element A is less than the situation level of another
element B, the element A is supposed to be in a class
closer to the root of inheritance tree than the class
that contains the element B. Elements that have the
same event time are placed at the same situation
level.

(2) Multiplicity M
The multiplicity indicates whether different

elements have the same identifier or not. If the
multiplicity of an identifier is greater than one, it
indicates that the identifier stands for more than one
element. When the extracted element is an attribute,
it has a unique identifier and the multiplicity is one.
When the extracted element is a method, the element
may share the identifier with other elements. Those
elements are placed at the same identifier space but
at different situation levels.

(3) Degree of multiple implementations V
When an element has multiple implementations,

it is prohibited to place it with other entity with
single implementation. The relation between the set
of elements with single implementation and such an
element with multiple implementations corresponds
to the “identifier dependent relation.”

4 APPLICATIONS TO THE
DERIVATION OF DESIGN
PATTERNS

The concepts of the software field and

constraint field lead groups of the extracted software
elements become the design patterns (Gamma, Helm,
Johnson and Vissides, 1995). Although we have
demonstrated that typical design patterns are
derivable from the software field, we failed to
explain how to derive the characteristics of the
software elements. The distribution functions we
have introduced in this paper rationalize the
characteristics of the elements and the derivation of
the design patterns. In this line of study may lead
the new design patterns from the software field and
the constraint field. In this section, we demonstrate
how two typical design patterns, i.e. the adapter

pattern and the bridge pattern, are derived from the
software field.
(1) Adapter: interface to objects

The adapter design pattern emerges when we
have a class with a stable method, e.g. the Target
class in Figure 6(b), and would like to add new
features without changing the interface. We can
start to distill this pattern through extracting
Request() method and SpecificRequest() method
from the software field, and placing them at the
appropriate position on the base level of the class
Target and the class Adapter. They are extracted at
the different event times.

The adapter pattern is formed when the extracted
elements Request() and SpecificRequest() have the
following characteristics; both of them have the
same coordinate values on the identifier axis and
they share the same implementation event time.
Since they have the same existence event period
(both the starting event time and the ending event
time are the same), we cannot place the two classes
that have Request() and SpecificRequest() at the
same place. Therefore we have to place them on
the different situation level. This makes them have
the inheritance relation with the base classes, and
the situation becomes shown in Figure 6(a). This
structure is the adapter design pattern shown in
Figure 6(b).

Target

Adaptee

Figure 6(a): The layout of the software elements
corresponds to the Adapter pattern.

[Request()]

[SpecifiedRequest()]

[Request() , SpecifiedRequest()]

T

E

I

Figure 7(c): The structure of bridge pattern with the constraints

(2) Bridge: implementation of objects
The bbridge design pattern emerges when we

try to separate the interface and the implementation
of a class and to make it easy to extend. The bridge
pattern emerges when there is an abstract method
Operation() and several its implementation methods
OperationImp() are known to be implemented at
different event times. Even though different
implementations are extracted at the different event
times, they all share the same abstract method
Opearation() with the one event time, the initial
layout of the elements are shown in Figure 7(a).

Due to the constraint of multiplicity, we cannot
place those implementations on the same situation
level. We have to place them on different situation
levels and to connect them with the “existence
dependent relation.” Since all the implementations
share the same identifier, classes that have them are
placed at the same place on the identifier axis and
have the inheritance relation with the base class
shown in Figure 7(b). The structure shown in this
figure has the multiplicity two. This structure is the
bridge design pattern shown in Figure 7(c). Note
that two methods, OperationImp1() and
OperationImp2() can be placed at the same situation
level, because they have different existence event
periods.

5 CONCLUSIONS

The mechanism of extracting the software
elements from the software field is explained.
Expressing the software elements as distribution
functions rationalizes the extracting operations for
the software elements and classes. The deriving
mechanism of the design patterns is also roughly
explained by the distribution functions and the
characteristics of the software elements. The
derivation process illustrated here is still a rough
sketch and it will be scrutinized in the next paper.
We believe that the constraint field determines the
distributions of the software elements and their
characteristics. The mechanism is still unknown.
The final goal we are pursuing is the construction
mechanism of the constraint field from the
specification. Then OOP software development will
be semi-autonomous process defined by the
specification.

REFERENCES

Gamma, E., Helm, R., Johnson, R. and Vissides, J., 1995.

Design Patterns: Elements of Object-Oriented
Software, Addison-Wesley.

Jacobson, I., Booch, G. and Rumbaugh, J., 1999. The
Unified Software Development Process, Addison-
Wesley.

Ohki, M. and Kambayashi, Y., 2002a. A formalization of
the Design Pattern Derivation by Applying Quantum
Field Concepts, In Knowledge-Based Software
Engineering, Proc.of JCKBSE 2002, IOS Press, pp. 66-
71.

Ohki, M. and Kambayashi, Y., 2002b. A Verification of
Class Structure Evolution Model and its Parameters,
In Proc.of IWPSE 2002, pp. 52-56.

Sharble, C. and Cohen, S., 1993. The Object-Oriented
Brewery: A Comparison of Two Object-Oriented
Development Methods, In ACM SIGSOFT SE Notes,
Vol. 18, No. 2, pp. 60-73.

Wirfs-Brock, R. and Wilkerson, B., 1989. Object-Oriented
Design: A Responsibility-Driven Approach, In Proc. of
OOPSLA ’89, ACM Press, pp. 71-75.References

Louis, R., 1999. Software agents activities. In ICEIS’99,
1st International Conference on Enterprise
Information Systems. ICEIS Press.

Smith, J., 1998. The book, The publishing company.
London, 2nd edition.

Figure 7(a): The initial structure for the Bridge pattern.

Operation()

OperationImp1 ()* OperationImp2 ()* I

E

T

Figure 7(b): The structure of Bridge pattern with the constraints.

I

[Operation()]

E

[OperationImp2 ()] [OperationImp1 ()]

[OperationImp ()]*

Abstraction

Implementor
T

