
A Verification of Class Structure Evolution Model and its
Parameters

Mikio OHKI
Nippon Institute of Technology

4-1 Gakusendai Miyashiro
Saitama Japan

+81-480-33-7466
E-mail: ohki@nit.ac.jp

Shinjiro AKIYAMA
JIPEngineering Service Co.,Ltd

8-3 Koamicho Nihonbashi Chuoku
Tokyo Japan

 +81-3-3808-1361

Yasushi KAMBAYASHI
Nippon Institute of Technology

4-1 Gakusendai Miyashiro
Saitama Japan

+81-480-33-7466
E-mail: yasushi@nit.ac.jp

ABSTRACT
It is widely accepted that the role of software “architect” that

provide frameworks to program developers is important in the
object-oriented software development processes. When
developers try to extend the base classes given by the architect,
they may want some guidelines that tell them how many
subclasses and how many methods in one subclass are reasonable.
So far we are not aware of such guidelines. Through
measurements of Java and Delphi class libraries, we have distilled
formulae that forecast the number of methods and the number of
subclasses when constructing class trees from the base classes.
We propose that we should focus to extract methods and attributes
rather than class structure. The formulae we have formulated
support this proposition.

Categories and Subject Descriptors
 [Metrics]: Object Oriented Program, Software Evolution.

General Terms
Measurement, Experimentation, Verification.

Keywords
Evolution model, Architect, Measurement，Verification.

1. INTRODUCTION
It is well known that using pre-organized class libraries is

effective in the object-oriented software development processes.
Jacobson et al. have proclaimed that the key person in such
software development is the “architect” who defines the
framework for the target application [1].

The major task of the architect is to prepare the base classes for
the application domain so that the fellow developers can use these
classes as the framework for the application. Although architects
usually provide information about class structure as well as the
function and usage of each class, they do not provide how to
extend those base classes through inheritance and composition.
What the developers would like to know is the guidelines which
of the following options and when they should employ them to
construct the subclasses. The options they can choose are:
(1) Construct one subclass and pack all the methods in it.

(2) Construct several subclasses in the same level, immediately
one under the super class, and make each subclass have a group
of methods.

(3) Construct yet another structured set of subclasses which has
hierarchical structure.

So far we are not aware of rules that can be used as guidelines

to construct the complete class structure based on a given
application framework. Of course, we have some empirical
knowledge rules such as “Class hierarchy should be based on
‘cases’,” but we would like to have quantitative guidelines such
as how many subclasses should be constructed under one super
class and how many methods each subclass should have.

We have found that well-organized class libraries have some
common structural pattern in their class hierarchy, and that such
patterns are preserved through class evolution. Therefore we
have analyzed the statistical characteristics of well-organized
class libraries, and distilled such patterns. The patterns suggest a
good way to construct subclasses of application framework.

In this paper, we describe: 1) our hypothesis that the structure
of a class is the history of the class evolution, 2) the idea to
formulate model formulae to construct subclass, and 3)
parameters for the formulae statistically computed from class
libraries of Java and Delphi. We close our discussion with a new
hypothesis that is suggested those formulae and the verification of
them. We ignored the “interfaces” in Java to simplify the
discussion.

2. THE CLASS EVOLUATION
HIPOTHESIS

Several studies have tried to quantify to what extend the
number of methods and attributes are correlated with class
structure [2]. Nakatani et al. have suggested, “Inheritance is a
means to adapt to a new circumstance caused by requests for
changes that the super class can not handle” [3]. This thesis is
based on the hypothesis that the class structure shows the history
of the given application. Reading class structure, we can trace
how the application has adopted to the new requirements and how
each class has survived in the course of design selections. Our
discussion is based on the idea that such effort for adoption is the
driving force of the inheritance.

The first step toward the guideline for subclass construction is
to find the relationship between a super class and the immediate
subclasses. Through such relation, we can statistically forecast
the number of subclasses, attributes and methods. In order to
analyze class libraries, we use two viewpoints as follows:
1) The relationship between the characteristics of a super class

level i, i.e. the number of attributes λ i and the number of
methods ξ i, and those of the subclasses level i+1, i.e. the
number of attributes λi+1 and the number of methods ξi+1.

2) The relationship between the characteristics of a super class
level i and the number of the subclasses of the super class ni+1 .

The observation upon the class libraries of Java and Delphi has
suggested that the number of methods and the number of
attributes in all the subclasses with level i+1 are related to the
number of methods and the number of attributes in the common
super class level i, respectively. These relationships can be
expressed as the following formulae.

ΣλΣλΣλΣλi+1 = f(λλλλi) ･･････ (1)

ΣξΣξΣξΣξi+1 = g(ξξξξi) ･･････ (2)

There are two types of methods in the subclasses. One group is

a set of new methods with new names that simply add new
functions to the subclasses. The other is a set of methods that
finalize the inheritance chain so that the subclasses of the subclass
cannot inherit those methods (by using keywords “private” and
“final”). Therefore the formula (2) can be refined as formula (3).
In this formula, αξ i expresses the increasing factor for the
number of methods of the first group proportional to the number
of methods in the super classξi, and (1－βξi) expresses the
decreasing factor for the number of methods of the second group
proportional to the number of methods in the super class. The
increasing factor α stands for the growth rate of the number of
newly added methods in subclasses. The decreasing factor β
stands for the ratio of the methods that finalize the inheritance.

ΣξΣξΣξΣξi+1 =αξαξαξαξi(1－βξ－βξ－βξ－βξi) ･･････ (3)

The formula(3) describes that the number of methods in all the
subclasses, Σξi+1, is determined by the cross-correlation between

the increasing factor and the decreasing factor. The number of
methods in all the subclass is expressed by a quadratic equation.
In other words, it represents a logistic-like mapping function that
the number of the methods in all the subclasses with level i+1 and
the number of methods in the super class level i, transit
themselves with keeping the autocorrelation-ship. This situation
is depicted in Figure 1.

Unlike the case of methods, the number of attributes in all the
subclasses increases monotonically. Therefore, the relationship
between the number of attributes in a super class and the number
of all the subclasses can be conjectured as follows:

ΣλΣλΣλΣλi+1 = γλγλγλγλi + δδδδ ･････ (4)

The number of subclasses of the super class level i can be

conjectured as follows:

ｎｎｎｎi+1 = εξεξεξεξi
－θ－θ－θ－θ ･･････ (5)

The formula (5) describes that a super class with many methods

has a small number of subclasses, and a super class with few
methods has many subclasses. Since the inheritance is based on
“cases,” it is reasonable that a super class with much functionality
has fewer subclasses than that with little functionality.

3. VERIFICATION OF HIPOTHESIS
3.1 Two Groups of Relations

In order to verify the hypotheses, we have counted the methods
of classes in ComponentUI in Java class library. The relationship
between all the classes and their subclasses is shown in Figure 2.

Figure 1. The number of methods in each class

ξi+1
2 ξi+1

3 ξ;+1
4 ξi+1

j ξi+

ξi
1 ξi

2

ξi+2
m ξi+2

n

Σξi+1
1

Σξi+2
3

ξ;+1
1

Figure 2 displays
conjectured that the rela
the root of a class hier
from the relationship be
a class hierarchy. There
and B based on the num
classes in each group a

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

0 10 20 30 40 50 60 70 80 90 100 110 120

Figure 2.

1
k

The relationship between all the
classes and their subclasses
two distinct
tionship betw
archy and its
tween a supe
fore we divid
ber of metho
re found in th
Group A
grou
een a

 subc
r clas
ed cl

ds, an
e cla
Group_B
The number of methods in superclasses
The number of methods in all their subclasses
ps of relations. We
 super class that is near
lasses may be different
s that is near the leaf of
asses into two groups A
d observed where those
ss hierarchy. Group A

consists of classes with the number of methods less than thirty,
and group B consists of classes with the number of methods more
than or equal to thirty.

The number of “thirty” is chosen heuristically. We compared
the average distance of each class from the leaf of class structure.
The results are shown in Table 1. We employed the t-test and
found statistical significance (The null hypothesis was rejected
with 5% critical value.) Classes of group A reside closer to the
root of class hierarchy than classes of group B. Classes of group
B reside relatively close to the leaf classes.

Table 1. Comparison of the distances from the leaves
between group A and group B

 Group A Group B

Number of Classes 25 7

Average Distance from Leaf
(Number of levels)

1.292 2.000

Variance of Average Distance 0.373 0.285

Standard Deviation of Average
Distance

0.624 0.577

Computed t-value -2.61

Classes of group A behave according to the formula (3), but

classes of group B behave differently. It seems that classes of
group B have linear relation with respect to super classes and their
subclasses. Therefore, the relation between the number of
methods in all the subclasses and the number of methods in their
super class of group B can be expressed in a linear formula as
follows:

ΣξΣξΣξΣξi+1 = aξξξξi + b ･･････(6)

Upon these observation, we determined to find parameters α
and β for group A, and parameters a and b for group B.

3.2 Estimating Parameters for Formulae
(a) Java Class Library

Since “ComponentUI” and “Component” in Java class library
provide enough classes for measurement, we employed the least
squares method to obtain parameters α and β, and a and b for
formulae(3) and (6), respectively. The results are shown in Table
2. The correlations among group A are shown in Figures 3 and 4.
Classes of group B show linear correlations.

(b) Delphi Class Library

We performed the similar analysis against VCL (Visual
Component Library) of Delphi. We chose four class trees,
TObject, TPersistant, and TWinControl, because of their rich
class hierarchy. Since most of the classes have more than thirty
methods, i.e. group A methods, we performed the regression
analysis to obtain α and β for formula (3). The results are
shown in Table 3.

Table 2. Parameters for forecasting formulae computed
from Java class library

NOCT: Names of class tree
NOC: Number of sample classes
PCP: Pearson correlation parameters
LOS: Level of significance
/The level of significance represents the reject level for the null

hypothesis of the Pearson correlation parameters. /

-2

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

0 5 10 15 20 25 30 35 40 45 50 55

Figure 3. Relation between the number of methods in super
classes and the number of methods in all their
subclasses found in group A of ComponentUI

■Estimated
◆Observed

The number of methods in all their subclasses

The number of methods in super classes

-6

-4

-2

0

2

4

6

8

10

12

14

16

18

20

22

24

26

0 5 10 15 20 25 30 35 40

Figure 4. Relation between the number of methods in super
classes and the number of methods in all their
subclasses found in group A of Component

The number of methods in all their subclasses

The number of methods in super classes

NOCT NOC Forecasting
Model
Formula

Parameters PCP LOS

ComponentUI
 Group_A 24 Quadratic α= 1.534 0.54 5%

 β= 0.020
Group_B 7 Linear a = 1.059 0.76 5%

 b = 8.367
Component

Group_A 14 Quadratic α= 1.874 0.47 5%
 β= 0.028

Group_B 10 Linear a = 1.305 0.76 5%
 b = 15.683

3.3 Forecasting Formulae for the Number of
Subclasses

Next, we find the parameters in formula (5), i.e. ε and θ.
The relationship between the number of methods in a class and
the number of methods in all the subclasses can be depicted in
Figure 5.

 Upon applying regression analysis to these data, we obtained

the forecasting model formula(7) as follows(the number of
samples is fifty, the correlation parameter is 0.60). This formula
forecasts the maximum number of subclasses of a super class. We
will scrutinize this formula in Section4.

ni+1 = 18.15ξξξξi
－－－－0.584 ･･････ (7)

4. OBSERVATIONS AND DISCUSSION
4.1 Rationale of the Formula for the Number
of Methods

In the previous section, we verified the formula (3), the number
of methods in all the subclasses is determined by the cross-

correlation between the increasing factor and the decreasing factor,
by using the Java class libraries, i.e. ComponentUI and
Component, and VCL of Delphi. The observed data show
statistical significance. From the observation, we can conclude
that the number of methods in all the subclasses is determined by
the cross-correlation between the increasing factor and the
decreasing factor. We believe that the software evolution appears
as the increase of the number of methods in the target software.
We demonstrate such increase of the number of methods can be
expressed by the logistic-like mapping function. We can say that
the class libraries that we used for verification have evolved along
the model formulae that we developed.

4.2 Rationale of the Formula for the Number
of Subclasses

One way to explain the fact that the number of subclasses is
inverse proportional to the power of the number of methods in the
immediate super class is introducing a new concept, namely the
connecting force of methods. Such conceptual force among
methods can be formulated as follows:

F = C mθθθθ ･･････(8)

In this formula, C and m stand for a constant and the number

of methods in a class, respectively. For example, when a method
in a class has interactions with all methods in the class including
the method itself, the number of the interactions is m2. If we
assume such connecting force, constructing a subclass requires
another imaginary force to extract methods from the super class
against this connecting force. Therefore, even though the
requirement for subclasses occurs in a constant probability, the
frequency that the requirement is satisfied with a certain effort is
inverse proportional to the connecting force. Upon applying this
hypothesis to the number of subclasses and the number of
methods in the super class, it is easy to understand the fact that the
maximum number of subclasses of a super class is inverse
proportional to the number of methods in the super class. This
hypothesis explains the formula (7).

4.3 Class Modeling Based on Attributes
It is demonstrated that the number of methods in all the

subclasses is expressed in logistic-like mapping function. The
logistic mapping function is known that it can be used to forecast
the variation of population. This fact suggests that methods may
determine the characteristics of the class. In other words, one
should construct a class from methods in bottom-up way. We
would like to propose the following propositions for discussions.
(1) The task of a method is modifying some attributes. Through
this modification, a method affects the behavior of other methods.
We should pay more attention to methods and attributes rather
than classes. Classes can be seen as mere containers of methods
and attributes. When we design software, we should extract
methods and attributes before constructing class structures. The
methodology that CRC cards employs suggests the same approach
[5][6]

Table 3. Parameters for forecasting formulae
 computed from VCL of Delphi

NOCT NOC Forecasting
Model
Formula

Parameters PCP LOS

TObject 12 Quadratic α= 2.313 0.86 1%
 β= 0.017

TPersistant 6 Quadratic α= 6.152 0.74 10%
 β= 0.019

TComponen 5 Quadratic α= 4.215 0.93 1%
 β= 0.065

TWinControl 11 Quadratic α= 2.921 0.63 5%
 β= 0.009

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

The number of methods in super classes

Figure 5. Relation between the number of methods in super
classes and the number of their subclasses

The number of subclasses

(2) There should be some rules that we can use for constructing
classes from methods (and attributes.) The other study of ours on
the timing of data generation and method implementation
suggests these constructing rules [7]. Formulating these rules is
the further research direction.

5. ACKNOWLEDGMENTS
A part of this research was performed as one of the HITOCC
projects and partially sponsored by Japan Information Technology
Services Industry Association.

6. REFERENCES
[1] I.Jacobsoｎ,G. Booch,J. Rumbaugh,”The Unifield Software

Development Process,” Addison Wesley (1999)

[2] Chidamber＆Kamemer，“A Metrics Suite for Object
Oriented Design,”IEEE Trans. SE Vol.20, No.6 pp.476-493
(1994)

 [3] Takako Nakatani, Tetuo Tamai，"A Study on Statistic
Characteristics of Inheritance Tree Evolution,” Proceedings of
Object-Oriented Symposium, IPSJ, pp.137～144（1999）. In
Japanese.

[4] Mikio Ohki,Shoijiro Akiyama,“A Class Structure Evolutional
Modeｌ and Analysis of its Parameters,” IPSJ Vol.2001 No.92
SE-133-3 pp.15-22(2001) .
In Japanese.

 [5].Wirfs-Brock, B.Wilkerson, “Object-Oriented Design: A
Responsibility-Driven Approach," Proc of OOPSLA’89, ACM,
pp. 71-75, 1989.

 [6].Wirfs-Brock,“Designing Objects and Their Interactions: A
Brief Look at Responsibility-Driven Design,” Carroll, J. M. ed.,
Scenario-Based Design, John Wiley & Sons,1995

 [7] Mikio Ohki,Kohei Akiyama,“ A Proposal of the Conceptual
Modeling Criteria and their Validity Evaluation ,” IEICE
VOL.J84-D-1 No.6 pp.723-735(2001)

http://uhura.nit.ac.jp/~ohki/ohki/paper/ieice2001_1.htm
http://uhura.nit.ac.jp/~ohki/ohki/paper/ieice2001_1.htm

	INTRODUCTION
	THE CLASS EVOLUATION
	HIPOTHESIS
	VERIFICATION OF HIPOTHESIS
	Two Groups of Relations
	6. REFERENCES

