
A Program Visualization Tool for Program Comprehension

Mikio Ohki Yasuo Hosaka
Nippon Institute of Technology

ohki@nit.ac.jp y-hosaka@ezweb.ne.jp

Abstract

At the beginning stage of programming education,
comprehending program logics plays a more important role
than capturing knowledge of a specific program language.
In this paper, the authors describe an outline of a
visualization tool that animates the actions of a program by
adding simple annotations to the variables defined in a
program, and show several ideas to improve the usability of
this tool. The authors also discuss the effectiveness of
program visualization.

1. Introduction

It is an undeniable fact that each student is born with a
different level of inherent programming ability. Teachers
who are responsible to elementary programming education
in a university make every effort to overcome these
differences among individual students. For example, they
usually use diagrams or animations to explain the basic
programming concepts and algorithms. However these
visualization methods have not been proved to effectively
improve the depth of a student's understanding level. The
SPI (Synthetic Personality Inventory) examination, which
has been used by companies to measure an examinee's
aptitude as a programmer, gives a suggestion to this question.
The SPI examination is designed to measure one's ability
both in the language field and non-language field (mainly
for image manipulation) and to judge one's total aptitude as
a programmer. If the results of the SPI examination show
any positive correlation between one's abilities in the
non-language field and one's aptitude as a programmer, a
student who can easily understand the basic programming
concepts and algorithms and is judged to be highly suitable
to a programmer should get higher scores in the
non-language field examination. On the other hand, those
who cannot understand the concepts and algorithms should
show lower scores in the non-language field examination.
Therefore providing the students who are less able to
manipulate images with a tool that presents diagrammatic
images or animations to offer assistance in understanding
subjects of non-language fields helps those students to
understand the basic programming concepts and algorithms.

This paper consists of two sections and is mainly
devoted to prove the assumption mentioned above. In one
section, we discuss the examination results with regard to
the correlation between the depth of program understanding
and the effects of program visualization. In the other

section, we describe the features and functions of the
program visualization tool, PAVI, which we developed to
prove the assumption.

2. Relationship between Image Operation
Ability and Comprehension Depth of
Programming Concept

The SPI examination is designed to measure one's
aptitude as a programmer and consists of the questions
related to the language field and those related to the
non-language field. Questions in the former category
include selection of related sentences, rearrangement of
sentences, sorting of strings and comparison of sentences,
and those in the latter category include sorting of values,
comparison of sums, identification of rotated figure patterns,
identification of cross sections of figures and identification
of rotated shapes.

The authors randomly selected 17 students from freshmen
who were learning the specifications and concepts of a
programming language (e.g., assignment, arithmetic and
logical operations, type conversion, one dimensional array,
control statements, loop and nested loops, pointer, etc.) for
the first time and conducted an examination to observe
whether there was a correlation between the test scores for
judging one's program understanding level and the results of
the SPI test. Since the examinees were less experienced in
programming, influence of accumulated programming
experiences was negligible. In the result of the
examination, statistically significant correlations were
observed as shown in Table 1.

Table 1. The correlation between the results of the SPI
test and the program understanding level

SPI terms

Program
Concepts

Arrange-
ment of
Order of
Terms in
Sentences

Applica-
tion of
Arithmetic
Calculati-
on

Identifi-
cation
of
Rotated
Shapes

SPI
Total
Score

s

Assignment
Statement 0.07 0.05 0.48* 0.12

Logical
Operation 0.53** 0.34 0.26 0.43*

Array
Definition 0.22 0.10 0.41* 0.25
Loop Control
Statement 0.34 0.35 0.39* 0.32

Array Access 0.37 0.42* 0.25 0.43*
Nested Loop 0.31 0.39* 0.30 0.46*

Total score:
comprehensio
n level of
prog. concepts

0.33 0.30 0.39* 0.40*

(Note 1) *: 5% significant level of Pearson correlation coeff.
(Note 2) **: 1% significant level of Pearson correlation coeff.

Among the SPI examination items, the image
manipulation ability shows significant correlation with the
understanding level of programming concepts. The result
indicates that the students with higher image manipulation
abilities can achieve a deeper understanding level of
programming concepts (especially for the assignment, array
definition, and loop control statements)[1].

3. Overview of PAVI

Base on the positive correlation between the image
manipulation ability and the understanding level of
programming concepts, we assumed that visualization could
assist those students of lower program understanding levels
in grasping image manipulations and then understanding the
program concepts. Thus, we developed the program
behavior visualization interpreter, PAVI (Program Action
Visualization Interpreter), to help students easily understand
and verify the program behavior.

3.1 Features of PAVI
(1) Animation exclusively focused on the assignment

operations
PAVI is a program visualization tool for elementary

training of C language programming, and interprets and
visualizes program behavior. It represents and monitors
variables, arrays, and pointers as three-dimensional objects,
and it animates the actions of an object whenever an
assignment operation is detected. The visualization scope
is limited to the assignment operations due to the following
three reasons. (a) As shown in Table 1, understanding the
concept of assignment operation correlates to image
manipulation. (b) The side effects of assignment
operations make it difficult to understand the procedures in a
program. (c) The concept of pointer is one of the major
obstacles in elementary programming education.
(2) Using tags to annotate program source code

PAVI uses special annotation statements or lines (i.e.,
PAVI tags) to specify target variables or pointers to be
visualized as three-dimensional objects and to define scopes
and styles for visualization, as shown in Figure 2. As a
markup language used to specify visualization attributes for
C programs, the PAVI tags have the following merits.
(a) Students need not modify existing program source code.

Simply adding PAVI tags as annotations is enough to
visualize the program behavior.

(b) Since the tags are written as annotation lines, they are
compatible with the C language compilers. As a result,
any part of program behavior can be visualized and

examined at any timing.
(c) Since the user is allowed to specify a specific range of

program source code to be visualized as needed, only
specified part of a large program can be conveniently
visualized.

int data[10] = { 24,10,8, 4,5,15,3,6,12,9 }
 /*$ coord=(-20, 0, -30) factor=3 color = 0xaa0000

shape= cylinder width=2 $*/ ;
void quickSort(int data[], int l, int r) {
 int i, j, v;
 int swap /*$ coord=(20,0,-1) factor=3 color= 0xffffff shape=

cube width= 3 $*/ ;
 if(r> l) {

v = data[r]; i = l - 1; j = r;
do {

while(data[++i] < v);
while(data[--j] > v);
if(i < j) {

 //$ traceBegin assign = line step 10
 swap = data[i]; //$ parBegin
 data[i] = data[j];
 data[j] = swap; //$ parEnd
 //$ traceEnd
 }
 } while(i < j);
 //$ traceBegin assign = line step 10
 swap = data[i]; //$ parBegin
 data[i] = data[r];
 data[r] = swap; //$ parEnd
 //$ traceEnd
 quickSort(data, l, i-1);
 quickSort(data, i+1, r);
} }

Figure 2. Sample PAVI Tags

(3) Interactive debugging environment
Since the PAVI environment is interactive, the user can

use the mouse to point to and click on the values or types of
variables, arrays, and pointers represented as 3D objects.
Thus, this feature allows the user to use PAVI as a
debugging tool.

3.2 Types and Attributes of Primary PAVI Tags
(1) The tag used to assign attributes to visualized objects

This tag is used to specify the variables, arrays, and
pointers to be visualized and to assign attributes to those
visualized objects. The following attributes can be specified.

(a) viewPoint: The viewpoint from which the user sees the
three-dimensional space.

(b) coordinate: The location of the object that matches the
data items in the three-dimensional space.

(c) color: The color of the object.
(d) shape: The shape of the object (cylinder, cube and

sphere)
(e) height: width: depth: The upper limit of the object

height, width, depth.
(f) factor: The scaling factor of magnitude of the object

(2) The tags used to specify the scope of visualization
These tags are used to specify the range of program

source code to be visualized and the type of object actions.
The following attributes can be specified.

(a) traceBegin, traceEnd: Assignment and pointer
operations executed in the range between these key
words are displayed as animated objects. They move
sequentially.

(b) parBegin, parEnd: Assignment and pointer operations
executed in the range between these key words are
displayed as animated objects. They move
simultaneously.

(c) trace Style: Specifies the style of trace line along which
the object moves from the start point to the end point.
The options include a straight line, circle and
rectangular.

(3) Other Specifications
In addition, the “include” and “define” specifications can

be used like as the C language.

3.3 Operation and Display
Like other algorithm visualization tools, such as BLASA

and Zeus, PAVI supports multiple synchronized views.
Figure 3 shows the Source Code Viewer, which is used to
display the location of the source code step currently
interpreted, and Figure 4 shows the Animation Viewer,
which is used to animate the 3D actions of assignment
operations.

Figure 3. Source code viewer (The currently evaluated
line is highlighted) .

Figure 4. Animation viewer: A program that contains
pointer operations is visualized

4. Comparison with Related Researches
Zeus[2] is an interactive visualization tool, which uses

multiple viewers. Lens[3] is a tool that allows the user to
control the animations within the various space and the
shape of objects in detail. Compared with the above tools,
PAVI provides simplified control of manipulation and
visualization. However, one of the objectives of PAVI is
to allow novice programmers to visualize the actions of their
programs by simply adding tags to the programs. With
regard to this point, adding tags as annotations is a more
powerful method compared with the above tools.

5. Conclustion
We conducted an experiment to observe if the use of

PAVI could enhance the space identification ability and then
improve comprehension level of program concepts and
algorithms. In this experiment, we divided the 17 students
mentioned in Section 2 into two groups and observed and
compared the comprehension level of each member of the
two groups, provided that the members in one group used
PAVI and those in the other group did not. In the experiment,
the students were requested to fill the blank spaces with
index operations of an array, break statements, assignment
statements or data exchanges operations.

We observed significant differences in the results of
algorithm questions between the two groups as shown in
Table 2. Achieving higher scores was reasonable for the
PAVI group since PAVI assists the students in
understanding the sorting process of the array elements.

Table 2. Differences between understanding levels of
the algorithm problems achieved with PAVI and without
PAVI

Algorithm
Problem

With
PAVI
Standard
deviation

Without
PAVI
Standard
deviation

t-value

Array operation 5.63 6.43 3.35**
Break 7.44 8.43 2.58*
Assignment Statem-
ent, Data exchange

7.29 4.86 2.54*

Total 30.56 33.00 2.90*
(Note 1) *: 5% significant level of t-test
(Note 2)**: 1% significant level of t-test

6. Refences
[1] M. Ohki, “The Effectiveness of a Program Visualization Tool in
the Beginning Programming Education”, Proc. of IPSJ Winter
Workshop on Software Engineering, 2003, pp.85-86
[2] M. Brown, “Zeus: A system for algorithm animation and
multi-view editing,” Proc. of IEEE Workshop on Visual Languages,
1991, pp. 4-9.
[3] Stasko J.T., Mukherjea S., “ Toward Visual Debugging:
Integrating Algorithm Animation Capabilities within a Source
Level Debugger ” , ACM Transactions on Human-Computer
Interaction, Vol. 1, No. 3, September 1994, pp. 215-244

